服務熱線
13795313415(微信同號)
VCA0.2EBR1流量計升級新型號使用安裝均一致,VCA0.2EBR1流量計可以提供KRACHT流量計中性價比很不錯的流量測量,同時可以搭配SD1-I-24儀表進行使用!
VCA0.2EBR1流量計支持德國原裝原廠供應,VCA0.2EBR1流量計可提供KRACHT技術指導!
VCA0.2EBR1流量計的供應很方便,現貨直接發貨很快:
VCA0.2EBR1流量計的參數的自整定:
在某些應用場合,比如通用儀表行業,系統的工作對象是不確定的,不同的對象就得采用不同的參數值,沒法為用戶設定參數,就引入參數自整定的概念。實質就是在使用時,通過N次測量為新的工作對象尋找一套參數,并記憶下來作為以后工作的依據。具體的整定方法有三種:臨界比例度法、衰減曲線法、經驗法。
VCA0.2EBR1流量計的一些使用情況需要注意:
1、臨界比例度法(Ziegler-Nichols)
1.1 在純比例作用下,逐漸增加增益至產生等副震蕩,根據臨界增益和臨界周期參數得出PID控制器參數,步驟如下:
(1)將純比例控制器接入到閉環控制系統中(設置控制器參數積分時間常數Ti =∞,實際微分時間常數Td =0)。
(2)控制器比例增益K設置為最小,加入階躍擾動(一般是改變控制器的給定值),觀察被調量的階躍響應曲線。
(3)由小到大改變比例增益K,直到閉環系統出現振蕩。
(4)系統出現持續等幅振蕩時,此時的增益為臨界增益(Ku),振蕩周期(波峰間的時間)為臨界周期(Tu)。
(5) 由表1得出PID控制器參數。
1.2 采用臨界比例度法整定時應注意以下幾點:
(1)在采用這種方法獲取等幅振蕩曲線時,應使控制系統工作在線性區,不要使控制閥出現開、關的狀態,否則得到的持續振蕩曲線可能是“極限循環",從線性系統概念上說系統早已處于發散振蕩了。
(2)由于被控對象特性的不同,按上表求得的控制器參數不一定都能獲得滿意的結果。對于無自平衡特性的對象,用臨界比例度法求得的控制器參數往住使系統響應的衰減率偏大(ψ>0.75 )。而對于有自平衡特性的高階等容對象,用此法整定控制器參數時系統響應衰減率大多偏小(ψ<0.75 )。為此,上述求得的控制器參數,應針對具體系統在實際運行過程中進行在線校正。
(3) 臨界比例度法適用于臨界振幅不大、振蕩周期較長的過程控制系統,但有些系統從安全性考慮不允許進行穩定邊界試驗,如鍋爐汽包水位控制系統。還有某些時間常數較大的單容對象,用純比例控制時系統始終是穩定的,對于這些系統也是無法用臨界比例度法來進行參數整定的。
(4)只適用于二階以上的高階對象,或一階加純滯后的對象,否則,在純比例控制情況下,系統不會出現等幅振蕩。
1.3 若求出被控對象的靜態放大倍數KP=△y/△u ,則增益乘積KpKu可視為系統的最大開環增益。通常認為Ziegler-Nichols閉環試驗整定法的適用范圍為:
(1) 當KpKu > 20時,應采用更為復雜的控制算法,以求較好的調節效果。
(2)當KpKu < 2時,應使用一些能補償傳輸遲延的控制策略。
(3)當1.5 <KpKu< 2時,在對控制精度要求不高的場合仍可使用PID控制器,但需要對表1進行修正。在這種情況下,建議采用SMITH預估控制和IMC控制策略。
(4)當KpKu< 1.5時,在對控制精度要求不高的場合仍可使用PI控制器,在這種情況下,微分作用意義不大。
2、衰減曲線法
衰減曲線法與臨界比例度法不同的是,閉環設定值擾動試驗采用衰減振蕩(通常為4:1或10:l),然后利用衰減振蕩的試驗數據,根據經驗公式求取控制器的整定參數。整定步驟如下:
(1)在純比例控制器下,置比例增益K為較小值,并將系統投入運行。
(2)系統穩定后,作設定值階躍擾動,觀察系統的響應,若系統響應衰減太快,則減小比例增益K;反之,應增大比例增益K。直到系統出現如圖1(a)所示的4:1衰減振蕩過程,記下此時的比例增益Ks及和振蕩周期Ts數值。
(3)利用Ks和Ts值,按表2給出的經驗公式,計算出控制器的參數整定值。
(4)10:1衰減曲線法類似,只是用Tr帶入計算。
采用衰減曲線法必須注意幾點:
(1)加給定干擾不能太大,要根據生產操作要求來定,一般在5%左右,也有例外的情況。
(2)必須在工藝參數穩定的情況下才能加給定干擾,否則得不到正確的整定參數。
(3)對于反應快的系統,如流量、管道壓力和小容量的液位調節等,要得到嚴格的4:1衰減曲線較困難,一般以被調參數來回波動兩次達到穩定,就近似地認為達到4:1衰減過程了。
(4)投運時,先將K放在較小的數值,把Ti減少到整定值,把Td逐步放大到整定值,然后把K拉到整定值(如果在K=整定值的條件下很快地把Td放到整定值,控制器的輸出會劇烈變化)。
3、VCA0.2EBR1流量計的經驗整定法
3.1方法一A
(1)確定比例增益
使PID為純比例調節,輸入設定為系統允許最大值的60%~70%,由0逐漸加大比例增益至系統出現振蕩;再反過來,從此時的比例增益逐漸減小至系統振蕩消失,記錄此時的比例增益,設定PID的比例增益P為當前值的60%~70%。
(2)確定積分時間常數
比例增益P確定后,設定一個較大的積分時間常數Ti的初值,然后逐漸減小Ti至系統出現振蕩,之后在反過來,逐漸加大Ti至系統振蕩消失。記錄此時的Ti,設定PID的積分時間常數Ti為當前值的150%~180%。
(3)確定積分時間常數Td
積分時間常數Td一般不用設定,為0即可。若要設定,與確定 P和Ti的方法相同,取不振蕩時的30%。
(4)系統帶載聯調,再對PID參數進行微調,直至滿足要求。
3.2方法一B
(1)PI調節
(a)純比例作用下,把比例度從較大數值逐漸往下降,至開始產生周期振蕩(測量值以給定值為中心作有規則的振蕩),在產生周期性振蕩的情況下,把此比例度逐漸加寬直至系統充分穩定。
(b)接下來把積分時間逐漸縮短至產生振蕩,此時表示積分時間過短,應把積分時間稍加延長,直至振蕩停止。
(2)PID調節
(a)純比例作用下尋求起振點。
(b)加大微分時間使振蕩停止,接著把比例度調得稍小一些,使振蕩又產生,加大微分時間,使振蕩再停止,來回這樣操作,直至雖加大微分時間,但不能使振蕩停止,求得微分時間的最佳值,此時把比例度調得稍大一些直至振蕩停止。
(c)把積分時間調成和微分時間相同的數值,如果又產生振蕩則加大積分時間直至振蕩停止。
3.3方法二
另一種方法是先從表列范圍內取Ti的某個數值,如果需要微分,則取Td=(1/3~1/4)Ti,然后對δ進行試湊,也能較快地達到要求。實踐證明,在一定范圍內適當地組合δ和Ti的數值,可以得到同樣衰減比的曲線,就是說,δ的減少,可以用增加Ti的辦法來補償,而基本上不影響調節過程的質量。所以,這種情況,先確定Ti、Td再確定δ的順序也是可以的。而且可能更快些。如果曲線仍然不理想,可用Ti、Td再加以適當調整。
3.4方法三
(1)在實際調試中,也可以先大致設定一個經驗值,然后根據調節效果修改。
流量系統:P(%)40--100,I(分)0.1--1
壓力系統:P(%)30--70, I(分)0.4--3
液位系統:P(%)20--80, I(分)1—5
溫度系統:P(%)20--60, I(分)3--10,D(分)0.5--3
(2)以下整定的口訣:
階躍擾動投閉環,參數整定看曲線;先投比例后積分,最后再把微分加;
理想曲線兩個波,振幅衰減4比1;比例太強要振蕩,積分太強過程長;
動差太大加微分,頻率太快微分降;偏離定值回復慢,積分作用再加強。
更多VCA0.2EBR1流量計信息期待您的咨詢!